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Abstract

We investigated the viscoelastic effects on the early stage spinodal decomposition (SD) in semi-dilute polymer solutions where the
coupling between stress and diffusion plays an important role. The so-called viscoelastic length, &,., within which the stress suppresses the
growth of the concentration fluctuations, was quantitatively evaluated experimentally. The evaluated value was found out to be about 10
times larger than the radius of gyration of polymer. We measured the interdiffusion coefficient, the cooperative diffusion coefficient, the zero-
shear viscosity, and the plateau modulus in the one phase region and evaluated &,. independently from the SD experiment. The value §&,.
obtained in the early stage SD agrees well with that estimated from the diffusion and viscoelasticity measurements, confirming the validity of
the Doi—Onuki theory. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamics of phase separation processes have been one of
the most interesting subjects in chemical physics both from
an experimental and theoretical point of view and widely
investigated for various systems such as metal alloys, binary
simple liquids, and polymer blends [1-5]. Recently, it has
been found that the dynamical asymmetry between consti-
tuent components in mixtures and solutions causes a
coupling between stress and diffusion that is due to an asym-
metric stress division [6]. This coupling effect causes unique
‘viscoelastic effects’ on the phase separation process [7—
10], shear-induced concentration fluctuations or phase
separation in polymer solutions [11-15] and nonsingle-
exponential decay in dynamic light scattering (DLS) for
polymer solutions [16].

Doi and Onuki (DO) have accounted for this effect theo-
retically by formulating a time-dependent Ginzburg—
Landau (TDGL) type equation which incorporates the dyna-
mical coupling between stress and diffusion [6]. Onuki and
Taniguchi further developed the linearized dynamical equa-
tion where they considered only a single relaxation process
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for the stress term in the TDGL equation to apply to the
early stage spinodal decomposition (SD) [17]. Thus, both
the dynamics of concentration fluctuations in phase separa-
tion processes in two phase systems as well as dynamics of
the concentration fluctuations in one-phase systems depend
not only on the thermodynamic force and transport coeffi-
cient in the system but also on the stress inhomogeneity
arising from concentration fluctuations and its relaxation
process. The dynamical asymmetry and viscoelastic effects
are thought to play an important role in concentration fluc-
tuations of polymer mixtures and solutions as well as other
physical systems, e.g. gels, colloidal suspensions. Thus, a
clarification of these effects is an important step towards the
deeper understanding of the dynamics of concentration fluc-
tuations in general complex fluid systems.

In this paper, we aim to explore the effects on SD in semi-
dilute polymer solutions and to analyse the experimental
results in the context of the DO theory. In this way, we
will quantitatively clarify how the viscoelastic effects affect
the growth rate of concentration fluctuations in a dynami-
cally asymmetric system composed of polymer and solvent
as dynamically asymmetric elements. In assessing the
validity of the DO theory, we focus on the so called ‘visco-
elastic length’, &,.. &,. characterizes the length over which
the stress built-up (as a consequence of the growth of
concentration fluctuations) and subsequent relaxation
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Fig. 1. Schematic representation of the concept of stress—diffusion coupling and the viscoelastic effects in polymer solutions. Semi-dilute solutions with
relatively homogeneous concentration (a) before phase separation, and with concentration fluctuations at a short length scale (b) and at a larger length scale (c)
after phase separation. £, designates an average mesh size for statistically homogeneous semi-dilute solution. In parts (b) and (c), the shaded regions designate
polymer-rich with the average mesh size ¢ < &, while the unshaded region designate polymer-poor regions with & > &,. Parts (b) and (c) differ in the

characteristic length / for the concentration fluctuations.

process suppresses the growth rate of the concentration
fluctuations.

Fig. 1 attempts to show schematically the concept of
stress—diffusion coupling, viscoelastic length, and the
viscoelastic effects. Suppose that concentration fluctuations
with a characteristic length [ are developed, as shown in
Fig. 1(b) and (c), from an entangled polymer solution with
statistically homogeneous polymer concentration in Fig.
1(a). Note that in Fig. 1(a), & is the average mesh size,
the shaded and unshaded areas in Fig. 1(b) and (c) represent
regions with higher and lower polymer concentrations with
smaller and larger mesh sizes, respectively. If the growth
rate of the concentration fluctuations I is faster than the
relaxation rate of the entangled polymer networks I';, the
concentration fluctuations will build up local stress. Further-
more, its spatial variation, and the built-up stress will be
relaxed at a rate I',, which is characterized by viscoelastic
properties of the system. The local variation of the stress
field in the solution affects the free energy functional of the
system and hence the diffusion processes of the system.

Thus stress—diffusion coupling occurs when I} > I, and
suppresses the dynamics of concentration fluctuations. If the
length [ is comparable with an average mesh size of the
entangled polymer networks &, (as shown in Fig. 1(b)),
this criterion should be fulfilled. However, for large

length-scale concentration fluctuations (when [>> &, as
shown in Fig. 1(c)), I'} is extremely small and such fluctua-
tions will be developed under a situation where the built-up
stress is completely relaxed, hence involving no such
stress—diffusion coupling.

Thus we can envision a screening length called the
‘viscoelastic length’ &, for the stress—diffusion coupling:
If I > £&,., the coupling is screened out, but if / < &, it is
relevant and is expected to become increasingly important
with decreasing [, since I ~ 72 and local stress built-up
and its inhomogeneity increase with decreasing . Thus the
coupling would affect the transport property of the system
expressed by the Onsager kinetic coefficient A(g). At large ¢
(satisfying g&,. > 1), this causes a suppression of A(g) as
g as will be discussed in Section 2.2. q(~l71) is wave
number of a Fourier mode of the concentration fluctuations
that are detected by scattering experiments at a particular
magnitude of scattering vector (,

q = (4m/A)sin(6/2) 1)

with A and 6 being the wavelength of the incident beam and
the scattering angle in the solutions, respectively.

It is striking to recognize that phase separation can be
coupled by viscoelastic relaxation and hence the visco-
elastic properties of the system. The research along this
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line is fascinating, as it involves various fundamental
problems in physical science, such as (i) nonequilibrium
statistical mechanics of phase transition and structure
formation in thermodynamically unstable systems, (ii)
rheology, (iii) scattering and structural characterization,
and (iv) polymer physics on semi-dilute polymer solutions.

In a separate short letter [18], we reported the SD process
of semi-dilute polymer solutions with time-resolved light
scattering (TRLS) experiments and evaluated &,.. In addi-
tion to this analysis, we estimated &,. also from measure-
ments of the diffusion and viscoelastic properties of the
same solutions as that used in the SD experiment in one
phase region. We found that the value &,. obtained in the
early stage SD experiments agrees well with that estimated
from the diffusion and viscoelasticity measurements. In an
extension of the previous paper, we present here the results
obtained at different temperatures and also details of the
estimation procedure of &,. from the diffusion and visco-
elasticity measurements.

This paper consists of the following sections. We briefly
give a theoretical background on our problem, including the
Cahn—Hilliard—Cook (CHC) theory and DO theory in
Section 2. We will show the experimental results on the
SD process of the polymer solution in Section 4, after
describing the experimental methods in Section 3. In
Section 5, we will first evaluate &,. both from the TRLS
experiments and from the diffusion and viscoelastic
measurements, and then compare the two results obtained
independently. Finally, we will summarize our results in
Section 6.

2. Theoretical background
2.1. Cahn—Hilliard—Cook theory

The description of the dynamics of phase separation
processes in A/B binary mixtures is expressed by a
nonlinear time-evolution equation based on time-dependent
Ginzburg—Landau theory whereby the local concentration
fluctuation d¢p (T, t) at position r and time ¢ is given by [19—
21]:

%S(l)A(r, 1= AVZ,LL(I', 1) + {(r, 1) + (HD term), 2)

where A is the Onsager kinetic coefficient, u(r,?) is the
local chemical potential, {(r,f) is the random thermal
force term, and the HD term is concerned with the long-
range hydrodynamic interactions [19-21]. 8¢ (r, 1) is given
by

BPA(r, 1) = Pa(r, 1) — Pag (3

with ¢, (1, 1) and ¢ 5, being, respectively, the volume frac-
tion of component A at r and ¢, and the space-averaged
¢a(r, 1). The random thermal force term can be expressed

by the following fluctuation—dissipation relation [1]:
(L, 0L 1))y = —2kg TAV23(r — r)d(r — 1), 4)

where kg and T are, respectively, the Boltzmann constant
and absolute temperature, and ¢ ) denotes the thermal aver-
age. If d¢p, (1, 1) is small and the HD term can be neglected,
Eq. (2) can be linearized in terms of 3¢, (x, 7) :

J
o 90 = AV3(—ry — CVH)3Pa(r, 1) + {1, 1),  (5)

where C is a positive constant related to the nonlocality of
interactions [22]. ry is a parameter related to thermodynamic
driving force for phase separation which is defined to be
positive in unstable region and increases with the quench
depth.

By applying Fourier transformation to Eq. (5), we obtain

d
S 3a(g: D) = AM@)g’(ro = Cg"Palg: D + &g 0, (6)

where 8¢, (g, 1) and {(q,t) are, respectively, the Fourier g-
modes of ¢, and {. {(q, 1) is given by [23]

(Ug, 0l 1)y = 2k TA(Q)G*3(t — 1')2m)*d(qg + ¢').  (7)

We can solve Eq. (5) to obtain scattered intensity as a func-
. 2
tion of g and £, 1(q, D[~{[3da(g, D),

I(g,1) = 1(g, ) + [1(¢,0) — I(g, ®)]exp[2R(g)1], ®)

where 1(gq,0), I(g, ), and R(q) are, respectively, I(q,t) at
t = 0, the virtual structure factor due to the random thermal
force effects, and the growth rate of 8¢, (q, ). R(q) is given
by

R(q) = A@)q*(ry — Cq°), (9a)

R(q) = A0)¢’(ry — Cq°) atq <R, ', (9b)

where R, is radius of gyration of polymers. At g < Rgl, itis
expected that A(g) is governed by the diffusion of centres of
mass of polymer coils, so that A(g) = A(0), a constant inde-
pendent of ¢. Thus the plot of R(¢)/¢* vs. g* should be linear
atg < Ry ! This linearized theory is called Cahn—Hilliard—
Cook theory (CHC theory) and it is well confirmed [24—30]
that the dynamics of the early stage SD can be approximated
by the CHC theory.

2.2. Doi—Onuki theory for spinodal decomposition in
dynamically asymmetric systems

Doi and Onuki have taken the viscoelastic effects into
account by formulating the TDGL type dynamical equation,
which incorporates the dynamical coupling between stress
and diffusion [6]. According to the DO theory, the dynamics
of phase separation processes in A/B binary mixtures is
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described by
%Sqf)A(r, t) = AV [Vu(r, 1) — aV-a(r,1)] + {(r,1)
+ (HD term), (10)

where « and & are, respectively, the dynamical asymmetric
parameter and the local stress of the system. For polymer
solutions, a = 1/¢,y, Where ¢, is the space-averaged
volume fraction of the polymer in the solution. If 3¢, (r, 1)
is small and the HD term can be neglected, the linearized
dynamical equation for 8¢, (g, ) is given by [17],

2 8(a.0) = A1 — CPaGD

— Ag)aZ(g,n) + {(q, 1), 1)
where Z(g, ) is the Fourier component of Z(r, f) given by
Z(r,t) = V-V-o(r,1). (12)

By linearizing the stress term Z(g, t) for small 8¢ (g, 1), we
obtain

4aq2

4 0
Zq.1) = JO AGlr = 1) 5ba(a, 1), (13)

where G(t) is the relaxation function for modulus and
expressed by a sum of moduli for fundamental relaxation
processes:

G() = i Giexp(—t/T;) (14)

=1

with G; and 7; being strength and relaxation time of the ith
relaxation process of the stress, where 7 > 1 > 7,
Substituting Egs. (13) and (14) into Eq. (11), we obtain

4A0)g?
3dio

d
- 36alg: 1) = AO)g*(ro = Cq*Wdpalg: 1)

t 0
x JO dr'Gt — 1)~ 8@, 1) + (. 1)
(15)

at g < 1/R,, where A(g) = A(0). The following is worth
noting: The CHC theory [first term in RHS of Eq. (15)]
predicts the concentration fluctuations grow at g =
(rO/C)” % for the thermodynamic unstable solutions but the
growth rate is suppressed due to existence of the second
term in RHS of Eq. (15); the larger the ¢ value, the larger
the suppression.

If R(g)~" is larger than the longest relaxation time 7; in
G(1) (i.e. the stress relaxation occurs much faster than the
concentration fluctuations), we can set 93¢, (g, t)/ot' =

384 (g, 1)/dt, so that Eq. (15) reduces to

4A(0) i GiTi
=1 2
1+ Y q 58%(61, )]
= A0)q*(ro — Cg")dpa(q. 1) + L(g. 1. (16)

Therefore the change in (g, ) with time is described by the
same form as that in Eq. (6) and hence in Eq. (8), except for
the fact that A(0) in Eq. (9b) should be replaced by a g-
dependent Onsager kinetic coefficient defined hereafter as

Aett(q),
A(0)
1+ &g

The g-dependence of the Onsager coefficient originates
from the viscoelastic length £,. defined by

Aete(q) = (17

n 172
4A0)> G,
i=1

4A0)m )"
ve — = ’ 18
¢ 3% ( 6%, ) (%)

where 7, is zero-shear viscosity of the solution. Thus R(g)
in Eq. (9b) should be replaced by

R(@) = Ai(@)q*(ro — Cq%) (19)

2.3. Doi—Onuki theory for dynamic structure factor in
dynamically asymmetric systems

Let us discuss the dynamics of the concentration fluctua-
tions in the one phase solution as elucidated by the dynamic
structure factor S(g,f), which can be measured with
dynamic light scattering (DLS) [31]. Applying Laplace
transformation to Eq. (15) with respect to ¢, we obtain

1+ (GA0)FG(w)3ha0)
" R(g) + i+ (4A0)FG(w)/3d,g)

dda(q, w) ddalg,0),

(20)

where ¢, (r, w) and G(w) are, respectively, the Laplace-
transformed 8¢, (g, 1) and G(1), respectively. S(g, t) is given
by

_ (364,08 (4.1)

where * denotes the complex conjugate. Thus the Laplace-
transformed S(g, 1), S(gq, w), is given by

S(q, 1)

2y

S o) = — LT (4A0)g*G(w)/3h )
Y7 R@) + 1w + GAO)PG(@)/3bn)

(22)

When G(z) is expressed by Eq. (14), the inverse Laplace
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Fig. 2. Cloud point curve of PS/DOP solution. The filled circles and open
circles, respectively, indicate the temperatures after and before quench
for the TRLS experiment described in the text, while crosses indicate
the temperatures where the viscoelastic and DLS measurements were
conducted.

transformation of Eq. (22) gives

S(q,1) = S{qexpl—T'(q)1], (23)

i=1

where I'; and S; are the g-dependent relaxation rate and the
relaxation intensity of the ith relaxation process, respec-
tively. I'; and S; have the following relationship with inter-
diffusion coefficient D and cooperative diffusion coefficient
D.:

> Si@I'q) =Dq’ 24)
i=1
and
dDT@=Dq + > 7, (25)
i=1 j=1
where D and D, have the following two relationships,
D = A(O)ry, (26)
and
4A00) &
D.=D+ (Z)ZGi. @27
3dno =

Here >/_; G; corresponds to the rubbery plateau modulus
Gy of the solution. Thus, D and D., respectively, can be

estimated from the slope of a plot of Y i~ S;I'; vs. g°, and
from the slope of a plot of 7, I'; vs ¢* [31]. S, S,T'; can
be estimated from the first cumulant of S(q,?), K (g) =
—[01n S(q, 1)/91],—, since D> i, S;I; = K.
From Egs. (18) and (27), we obtain

D.—D

&2 = (067)%' (28)
N

Thus, we can estimate &,. from DLS and viscoelastic
measurements.

3. Experimental method
3.1. Sample preparation

The polymer used here is polystyrene (PS) with the
weight-averaged molecular weight M,, of 5.48 x 10° and
the polydispersity index M, /M, = 1.15, where M, denotes
the number-averaged molecular weight. Dioctyl phthalate
(DOP) was used as a solvent. The @ temperature of the
solution is 22°C. The concentration of PS used was
6.0 wt% which is 6.7 times larger than the overlap concen-
tration. The solution was prepared by dissolving PS and
DOP in excess methylene chloride and by completely
evaporating methylene chloride. Fig. 2 shows the cloud
point curve of the PS/DOP solution. The PS/DOP solution
has an upper critical solution temperature type phase
diagram and the 6 wt% solution has cloud point of 13.8°C.

3.2. Time-resolved light scattering measurement

We quenched the solution from 20.0°C (one phase region
as shown by the open circle in Fig. 2) to 10.8 and 12.3°C
(where the solution was in thermodynamically unstable
region; filled circles in Fig. 2) and then measured the change
in the scattered intensity /(g, t) as a function of g and time ¢
during the phase separation process of the solution with
time-resolved light scattering (TRLS) technique with a
He—Ne laser as a light source. The range of scattering
angle covered was from 2 to 65° in air, corresponding to
the range of ¢ from 1.02X 10 > t0 9.5x 10> nm™~". The
scattered intensity was corrected for the fluctuation of the
incident beam and the turbidity of the sample [32].

3.3. Dynamic light scattering measurement

We measured DLS for the same solution as that used for
the TRLS measurements in one phase region with an ALV-
5000® instrument using an Ar” ion laser as a light source.
The scattering angle for DLS measurement was varied from
30 to 150°. The temperature range covered for DLS varied
from 25 to 50°C with a temperature step of 5°C (crosses in
Fig. 2). The scattering cells were precision 10 mm diameter
NMR tubes. The sample cells were immersed in a (15 cm
diameter) cylindrical bath filled with index matching liquid
(toluene) for the DLS measurement.
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Fig. 3. Changes in the light scattering profiles with time during (a) an early
stage and (b) later stage phase-separation process after the quench from
T =20.0 to 10.8°C. AT is quench depth from the cloud point temperature
(13.8°C).

3.4. Viscoelastic measurement

The viscoelastic properties were investigated with stress
relaxation measurements (SRM) and steady-shear viscosity
measurements (SVM) in the one phase region using the
same solution as that employed for the TRLS measurement.
The covered temperature range for SRM and SVM was
identical to that used for DLS. A rheometer (Rheometrics
ARES®) with a fluid bath temperature control was used for
SRM and SVM with the cone-and-plate fixture. The strain
used in SRM, 0.5, was within the linear viscoelastic range.
The SVM frequency ranged from 0.001 to 10s~".

4. Results

Fig. 3 shows the change in (g, t) during the phase separa-
tion process after the onset of the quench from 20.0 to
10.8°C. In the early stage of phase separation shown in
Fig. 3(a), the scattering peak appears at a particular g-
value defined as g, ¢, = 3.0X 107> nm™ ', and the scat-
tered intensity increases with time in the observed g-range,
while the g, value remains nearly unchanged with ¢. This

Ln [Ii(a,t)]

103q /nm”
2.7 (shiftx8)
4.7 (shiftx4)
6.8 (shiftx2)
8.1 (shiftx1)

HEX0)»

1 1 1 1 1
0 100 200 300 400 500 600
t/s

Fig. 4. The semi-logarithmic plot of /(g, 7) vs. ¢ at various fixed gs after the
quench. The solid lines show the best-fit of I(g, ) (symbols) with Eq. (8)
using nonlinear regression.

change in I(g, t) is similar to that in the early stage spinodal
decomposition in polymer blends or dilute polymer solu-
tions, except for the fact that the peaks here are much
broader than others. In this work, we focus on the early
stage phase separation behaviour and hence we analyze
the data with CHC theory. Similarly to other systems, the
peak position shifts towards the smaller g-region after the
early stage as shown in Fig. 3(b), indicating that the coar-
sening process occurs. However, the scattered intensity in
higher g-regions increases more slowly than that at lower g-
regions, so that the scattered intensity distribution becomes
broader with time.

Fig. 4 shows the semi-logarithmic plot of I(g,f) vs. t at
various fixed gs after the onset of the quench. The CHC
theory predicts that the change in I(g,f) with time in the
early stage SD can be described by Eq. (8). Thus, we
checked whether or not our early stage data corresponded
to CHC behaviour by conducting a nonlinear fit of this data
to Eq. (8), using (g, ), I(g,0) and R(q) as adjustable para-
meters at each ¢ value. We were able to fit the data well and
obtained the growth rate R(g). The data deviate from the
fitting curves at large 7 because the nonlinear term becomes
nonnegligible as a consequence of the increase in the ampli-
tude of the concentration fluctuations. Actually, a remark-
able slow down in the rate of intensity growth can be
observed in the later stage of t = 350 s.

Fig. 5 shows the g-dependence of R(g) at 10.8 (X ) and
12.3°C (O). The plot of R(g) vs. ¢ has a maximum at g =
3.0x 107 nm ™" at 10.8°C which agrees with the peak posi-
tion in (g, t). In Fig. 5, R(¢g) at T = 12.3°C with the peak at
qg=4.0Xx 107% nm ™! is also shown [18]. The behaviour of
R(q) at both temperatures show a similar tendency, though
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X R(q)at10.8°C
— fitting curve for 10.8°C
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o R(q)at12.3'C
10.3 --- Case of§e=0 for 12.3°C
E v

— fitting curve for 12.3°C

R(g)/s”

103q /nm’”

Fig. 5. Semi-logarithmic plots of R(g) (crosses at 10.8°C and circles at
12.3°C) vs. g. The solid lines indicate the R(g) calculated by using
Egs. (17) and (19) with &, = 1.04X% 10°nm at T =10.8°C and
£ =9.5x 10 nm at T = 12.3°C, while the two broken lines indicate
the corresponding fictitious curves of R(g) for the case of &, = 0.

R(g) at T = 10.8°C is larger because of the deeper quench,
indicating that the phase separation at these temperatures is
in thermodynamic-control regime.

According to the CHC theory, the g-dependence of R(q)
is given by Egs. (9a) and (9b). As discussed already, Eq.
(9b) is applied to our experimental condition. Thus the plot
of R(qr)/q2 vs. ¢* should be linear. However, as shown in Fig.
6, the plots of R(q)/q2 vs. ¢* for the both quenches (repre-
sented by filled circles and open squares) do not show the
linear relationship but rather a quite remarkable nonlinear
behaviour as characterized by a large downward curvature,
in contrast to the CHC prediction and the previous results
[24-30].

We investigated possibility that this R(q)/q> behaviour
originated from the viscoelastic effects, by analyzing the
data with the DO theory as will be discussed in the Section
5.1.

5. Discussion
5.1. Test of DO theory

We were able to fit the plot of R(q)/q2 vs. g° with Eqgs. (17)
and (19), using ry, C, and &,. as floating parameters, as
shown by the solid line in Fig. 6. The viscoelastic length
&, obtained is 1.04 X 10°nm at 7 =10.8°C and
9.0x 10° nm at T = 12.3°C. Fig. 7 shows comparisons of
the experimental (symbols) and theoretical results (dash-dot
line and solid line for the results at 12.3 and 10.8°C, respec-
tively) on the g-dependence of Ag(q). Aes(g) has a g >
power law dependence at high ¢, indicating that the visco-
elastic effects strongly suppress the growth rate of the
concentration fluctuations in this ¢ regime and can cause

30

e 10.8°C
— fitting curve for 10.8°C
2 --- Case of ive=0 for 10.8°C
5 0 12.3°C
.~ — fitting curve for 12.3°C
- 20 T Caseof§ =0 for12.3°C
(%] Sao
N s
E \\~
£
~_ 15
o S
= S
C
X 10r S

106q2 /nm™

Fig. 6. R(q)/q2 is plotted as a function of ¢* The solid lines are the best fit of
the results (filled circles at 10.8°C and open squares at 12.3°C) with Egs.
(17) and (19) with &, = 1.04 X 10* and 9.5 X 10* nm, respectively, while
the two broken lines are the corresponding fictitious cases with &, = 0.

the downward curvature in the plot shown in Fig. 6. It is
found that A¢(g) at T = 10.8°C is more suppressed than
that at T = 12.3°C, since &, is larger at the lower tempera-
ture. The broken lines in Figs. 5—7 present the fictitious case
where the viscoelastic effects on R(g) could be ignored
(éve = 0). Comparing the two cases, the actual growth rate
R(g) is much smaller, and the degree of suppression
increases with increasing g (or gé&,.). The peak position of
the fictitious R(q) with &, = 0is 7.5 X 107 nm " at 10.8°C
and 8.0 X 107> nm ' at 12.3°C; about twice as large as those
of the respective actual R(g). This indicates that the visco-
elastic effects affect not only the growth rate of the concen-
tration fluctuations but also the wavelength of the initial
periodic structure developed in the early stage SD.

A_(aY/A(0)

— fitting curve for 10.8°C
o 12.3°C

--- fitting curve for 12.3°C

2| ---Caseofg =0

102 b

q /nm”’

Fig. 7. A:(q)/A(0) is plotted as a function of ¢. The solid line indicates
/(1 + q*&%) with £,=104x10°nm at T=108°C and &, =
95x10°nm at T = 12.3°C, while the horizontal broken line is the
fictitious case with &, = 0.
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Fig. 8. 1 plotted as a function of y at 50°C. The solid line is the best fit
results with Eq. (29).

5.2. Independent estimation of &,, from DLS and
viscoelastic measurements

In Section 5.1, we estimated the viscoelastic length &,
from time-evolution studies of the concentration fluctua-
tions in the early stage SD process using Eqs. (17) and
(19). Here, we confirm validity of &, thus estimated by
comparing it to &, values obtained from other independent
experiments. As discussed in Section 2.3, £,. can be also
evaluated using Eq. (28). For this purpose, 1y, Gn, D, and D,
must be measured. However we cannot directly measure
them at 10.8 and 12.3°C, because the solution is in the
two phase region at these temperatures. Therefore, we
measured them at various temperatures in one phase region
and extrapolated the respective values to those at 10.8 and
12.3°C in order to assess &,.s at 10.8 and 12.3°C.

5.2.1. Estimation of 1

We obtained the temperature dependence of 71, from
SVM of the solution. Fig. 8 shows a typical shear rate (y)
dependence of viscosity n at a given temperature (50°C). At
lower ys, n becomes constant, while the shear thinning can
be observed at higher y. We were able to fit the data on 7 vs.
v at a measured temperature with the Carreau Model [33]:

n=noll + (1,717 29)

using 7, T, and a as floating parameters, where 7, and a
are, respectively, the longest relaxation time and the power-
law index. Fig. 9 shows the temperature dependence of 7,
thus evaluated. 1 was expressed by the following Arrhe-
nius type equation in units of Pa-s:

Mo = 8.51 X 10 3exp[(6.91 X 10°)/T]. (30)

5.2.2. Estimation of Gy
We estimated Gy from the SRM measurement. Fig. 10
shows the typical behaviour of the solution shear modulus

|
3.1 32 33 3.4 35
10°T" /K

Fig. 9. 1, is plotted as a function of inverse of absolute temperature. The
solid line is the best fit of the results (filled circles) with an Arrhenius type
equation (Eq. (30)).

G(t) with time for a given temperature (of 50°C). We
analyzed G(t) with Procedure-X [34] and found G(f) was
well-fitted with the sum of exponential functions (Eq. (14)).
The steady-state compliance Jg was calculated from G(r) as
7.46 x 102 Pa~" at 50°C using

67
i=1

We estimated Gy = 26.8 Pa from the following empirical
relationship [35]:

I = 31)

GnJ? = 2.0. (32)

In this way Gy was determined as a function of 7, though the
data is not shown.

5.2.3. Estimation of D and D, from DLS

Fig. 11 typically shows S(g, ¢) of the solution at ¢ = 2.0 X
1072 nmfl, 2.8%x10°2 nm~ !, and 3.2 X 1072 nm !, and at
T =50°C. S(g,t) was evaluated from the autocorrelation
function g(g, t) of the scattered intensity by using the stan-
dard correlation spectroscopy. In order to obtain D, we esti-
mated the first cumulant K; from the plot of In[S(q, )] vs. ¢
over the early time regime. Fig. 12 typically shows K| of
the solution (at 50°C) plotted as a function of ¢>. The data
shows a linear relationship with a zero intercept (Eq. (24)).
This behaviour was observed at other temperatures as well
and we later estimate the temperature dependence of D
(Fig. 15).

In order to obtain the distribution of I'; and the value
S, T, we analyzed S(g,r) with CONTIN [36]. Fig. 13
shows S; plotted as a function of I'; at various g values
and at T =50°C. We calculated > /., Iy from these
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Fig. 10. G(z) of the solution at 50°C double-logarithmically plotted as a
function of ¢. The solid line indicates the best fit obtained with the
Procedure-X.

distribution and the value was plotted as a function of ¢* in
Fig. 14. D, was determined from the slope of the linear plot
(Eq. (25)). This procedure was repeated for other tempera-
tures, and the temperature dependence of D, is shown in
Fig. 15 (filled squares).

The temperature dependence of D, — D was also deter-
mined and found to have the following equation:

D, — D = 3.00 x 10%exp(—8.24 x 10%/T), (33)

as shown in Fig. 15. From the temperature dependence of 1
and D — D., and Gy, we estimated the viscoelastic length
&, using Eq. (28). Fig. 16 shows the weak temperature
dependence of &,.. The open circles in Fig. 16 show &,
obtained from TRLS experiment during the SD processes.
The extrapolated values (solid line) from one phase region
agree well with that obtained from the dynamics of early

1p '
8|
6|
4
2
Z01¢F
%) 8
6 ® . B
4 T=50°C Chh Lol
q/nm’” ‘Le;ﬂ g e
o 0.038 Thl
2 0 0028 el
A 0.020 R
oo°? %@ e
0.01k L L L L Lo
-6 -4 -2 0 2
10 10 10 10 10
t/s

Fig. 11. (g, 1) at 50°C is double-logarithmically plotted as a function of .

600F

500F o Data
— fitting
400+

K1=Dq2
D=3.70x10%cm?2s™"

-

o

(=)
T

01‘ 1 1 1 1 1 1 1
00 02 04 06 08 10 12 14

103q2 / nm™

Fig. 12. K; at 50°C plotted as a function of ¢ The solid line is the best fit
of the results.

stage SD. This agreement is the first clear-cut confirmation
of the fact that the DO theory can be used to describe the
dynamics of the phase separation process in dynamically
asymmetric binary systems.

0038 e=

S;/a.u.

0 1 1 <
1 0-4 1 0-3 -1 0

102 107 10
l“i/mS'1

Fig. 13. Semi-logarithmic plot of S; vs. I'; at various gs and at T = 50°C.
Each plot is shifted by a factor of 1.
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Fig. 14. 3™, T, plotted as a function of ¢” at 50°C. The solid line is the best
fit of the results.

6. Conclusion

We investigated the viscoelastic effects on the dynamics
of early stage SD in PS/DOP solutions where dynamical
asymmetry between polymer and solvent gives rise to
stress—diffusion coupling. We found that this effect strongly
suppresses the growth rate of the concentration fluctuations
at length scales smaller than the viscoelastic length &, and
that the length &, can be very large, about 10 times as large

10° F .

D,D,,(D,-D) / cm’s

200 300 310 320
T/K

Fig. 15. InD, InD,, and In D, — D plotted as a function of absolute
temperature. The solid line is the best fit of the results (symbols) (Eq. (33)).

1.4

1.2

1.0

£
3 0.8r
[

w70 6

® };ve from one phase region
o éve from SD process

0.4

0.2r

0_0 Il 1 1 1
280 290 300 310 320
T/K

Fig. 16. Temperature dependence of &, in the one phase region (filled
circles), as estimated from the DLS and viscoelastic measurements, and
in the two-phase region (open circles), as estimated from the dynamics of
the SD process, respectively.

as R,. We measured the interdiffusion coefficient, the coop-
erative diffusion coefficient, the zero-shear viscosity, and
the plateau modulus at various temperatures in the one
phase region in order to estimate &,. as a function of
temperature. &,. values obtained in this manner at various
temperatures can be extrapolated to the temperatures where
the SD experiments were conducted. The extrapolated
values agree well with those calculated from the analysis
of the early stage SD, confirming validity of the DO theory.
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